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A comprehensive theory of the binary chemical reaction, A + B → ∅, in a fluid at large Schmidt
number Sc and large Damköhler number Da is developed. We consider the case of chaotic flow in a
finite volume (chemical reactor). The major question addressed is: what is the law of temporal decay
of the overall amounts of the chemicals, Na and Nb, assuming Na = Nb. Four subsequent stages of
the decay are identified: (i) Na,b remain practically the same during the major part of the stage,
which is characterized by formation of a stripe-like distribution of chemicals. Exponentially fast
(with a decrement of the order of the Lyapunov exponent λ) decay of chemical concentration starts
closer to the end of the ln(Sc)/λ-long stage in the bulk which becomes almost empty of chemicals.
(ii) The empty region starts to propagate towards the boundary. Chemicals remain mainly in the

L/
√

λt-wide vicinity of the boundary, where L is the system size. The total amount of chemicals
decreases according to, Na,b ∝ 1/

√
t. (iii) Chemicals are mainly left in a narrow, diffusion controlled,

boundary layer. The decay law is exponential, Na,b ∝ exp(−γt), where γ ∼ λ/
√

Sc. (iv) Neither
advection nor diffusion are essential during this final spatially uniform stage.

PACS numbers: 47.70.Fw, 47.27.Qb

A natural expectation is that random advection should
essentially accelerate chemical reactions in fluid phase
[1], since it should lead to more homogeneous reaction
mixtures. Recently, this expectation was tested and con-
firmed in a 2d table-top experiment [2], where the case of
a slow reaction was addressed. (A slow reaction means
small Damköhler number, Da, which is defined as the ra-
tio of the mixing time to the characteristic time of the
reaction [3, 4].) In industrial reactors, however, chem-
ical reactions are typically faster than mixing and dif-
fusion [5]. This separation of temporal scales results in
formation of stripes, populated solely by one chemical.
The stripes of different chemicals are separated from each
other by an interface of complicated shape, and the chem-
icals co-exist only in the narrow interface domain where
the chemical reaction occurs. The reaction is limited by
diffusion in the sense that diffusion controls fluxes of the
chemicals into the interfacial reaction zone [6]. Our task
is to develop a theory explaining: how does chaotic advec-
tion influence the fast chemical reaction? The physical
picture of the acceleration phenomenon, which we quan-
tify in this letter, is that advection stretches domains
populated by one chemical into thin sheets, so that the
chemical reaction driven by diffusion proceeds more ef-
ficiently because of an essential increase of the interface
area.

We consider a binary chemical reaction, A + B → C,
in a dilute solution of the chemicals. We study decay
problem, with an initial distribution of the chemicals A
and B, created by injecting solution of one chemical, say
of A, into solution of the other chemical, B. It is assumed
that the inverse reaction C → A + B is negligible, i.e.
there is no back influence of C on the distribution of A
and B. Then molecular concentrations of the chemicals,
na and nb, vary according to the following non-linear

governing equations [7]

∂tna,b + (v · ∇)na,b = κa,b∇2na,b − Rnanb , (1)

where R is the reaction rate coefficient, v is the flow
velocity, which is assumed to be incompressible (∇ · v =
0), κa,b are the diffusion coefficients of the chemicals. One
assumes that the fluid dynamics is independent of the
chemical reaction, that is the velocity field does not sense
changes in the chemical concentrations nor heat released
as the result of the chemical reaction. Our approach is
also applicable to the case, realized in tubular chemical
reactors, when the solution of the chemicals, prepared at
the entrance, is then pushed through a pipe. In this case
the position along the pipe plays the role of time in the
decay problem.

The major question addressed in the letter is: how do
the total amounts of chemicals, Na,b =

∫
dr na,b(t, r),

decay as time t advances? We focus primarily on the
case of perfect matching Na = Nb. This case is of major
interest for applications, as it allows to get pure product
C (not mixed with the reagents), by the time reaction is
completed. (An effect of a mismatch between Na and Nb

is also briefly discussed later in this text.)
We will be discussing mainly the case of κa = κb = κ.

(It is argued later in the text that κa �= κb does not lead
to significant changes in the theory.) Then one obtains a
closed equation for the difference field, n = na−nb, from
Eq. (1),

∂tn + (v · ∇)n = κ∇2n , (2)

i.e. one finds that n(t, r) is a passive scalar field. Note,
that n has no definite sign, and that

∫
dr n = 0 in the

case of perfect matching of the total amounts of chemi-
cals, Na = Nb.
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One assumes that the chaotic statistically steady ve-
locity field v(t, r) contains only few harmonics of the
reservoir size, i.e. the flow is smooth. This regime can
be realized in chemical reactors with mechanically ro-
tating mixers or externally driven magnets stirring the
fluid in the perfect mixing devices and also in the tubu-
lar reactors at moderate Reynolds numbers. (See [5] for a
discussion of the chemical engineering principles behind
various reactor designs.) Complementary to its practical
significance, passive scalar advection in a smooth chaotic
flow is also a well studied (by both theoretical [8–12] and
experimental [13–15] means) subfield of statistical hydro-
dynamics. (See also reviews [16, 17].) The passive scalar
decay theory, developed in [12, 18] for an unbounded flow,
was recently modified for bounded flows, i.e. for chaotic
flows with suitable (no slip) conditions on the boundary
[19]. Smoothness of the flow allows one to approximate
the velocity difference between close points by a linear,
although fluctuating in time, profile. In the bulk region,
the linear profile approximation is valid for separations
smaller than the system size L. In the periphery, i.e.
close to the solid boundary (wall), the linear profile ap-
proximation is valid for velocity fluctuations on a scale
smaller than distance to the boundary. An important
(for advection of the passive scalar, n) consequence of
the linear velocity profile approximation is that close La-
grangian trajectories diverge exponentially in time. The
mean logarithmic rate of the nearby Lagrangian trajec-
tories divergence defines the Lyapunov exponent of the
flow, λ. Notice, that in the peripheral domain advection
is essentially anisotropic, and the stretching rate along
the boundary is estimated by λ, while the stretching rate
in the direction normal to the boundary is significantly
smaller.

We now discuss the characteristic spatial scales in the
problem. The size of the system, L, which is also the
chaotic flow typical eddy scale, is the largest scale in the
problem. A comparison of the advection and diffusion
terms in Eq. (1) sets the dissipative scale of the flow,
which in the bulk region is rd =

√
κ/λ. We assume

that the Schmidt number, Sc ∼ (L/rd)2, is large, i.e. in
the asymptotically wide range of scales, L � r � rd,
advection dominates diffusion. The width of the diffu-
sive boundary layer is estimated by rbl ∼ Sc1/4rd, i.e.
rbl > rd. Correspondingly, yet another important scale,
associated with the chemical reaction itself, is the size of
the reaction zone, rch (the width of the interfacial do-
main where the chemical reaction occurs). In the bulk
region the scale is estimated by rch = rd[λ/(Rnm)]1/3,
where nm is a typical concentration of the chemicals in-
side the layers. (The estimate for the width of the reac-
tion zone should be modified near the boundary, where
it appears to be larger than in the bulk.) Initially, rch

is much smaller than rd (and, consequently, than L); the
inequality is a consequence of the Da � 1 assumption.
(Indeed, in accordance with the definition, the Damköler
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FIG. 1: Chemical reactor boundary is drawn by solid line on
the main chart. Dotted lines separate bulk, peripheral and
boundary domains of the flow. Chart in the upper right corner
shows schematically the stripe structure magnified from the
bulk and/or peripheral domains. Black and white regions are
the ones populated by A and B respectively. The chart in the
low right corner shows (under even stronger magnified glass)
distribution of chemicals normal to their contact interface.

number can be estimated as Da ∼ Rn0/λ, where n0 is a
typical value of the initial chemical concentration. Thus,
at t = 0, rch ∼ Da−1/3rd.) However, rch grows as nm

decreases. Thus even though the separation of scales is
perfect initially, it eventually breaks down at the latest
stage of the chemical reaction. A cartoon illustration
of the scale hierarchy is shown in Fig. 1. The magnified
striped structure is shown on the chart in the upper right
corner of the figure. Regions populated by one chemi-
cal are single-colored. To resolve the interface domain,
even stronger magnification is needed. Dependence of
the chemicals concentrations on the coordinate normal
to the interface is shown schematically on the chart in
the lower right corner of the figure.

The separation of scales, rch � rd, L, allows an im-
portant simplification in the description. Indeed, the
chemical reaction takes place in the rch-narrow interface
domain, where the values of na and nb are comparable.
Outside this narrow region, i.e. in the region dominated
by one of the chemicals, the presence of other chemical
is negligible. Thus, in the limit rch → 0, i.e. when the
reaction zone becomes infinitesimally thin, one obtains

if n > 0 then na = n , nb = 0 ;
if n < 0 then nb = −n , na = 0 . (3)

This relation implies a remarkable conclusion: the fast
chemical reaction can be described in terms of the linear
setting (2,3) which does not contain the chemical reaction
rate coefficient R. The reaction rate is determined by the
diffusion fluxes of A and B to the n = 0 surface. These
fluxes are equal to each other and opposite in sign, which
is translated, at rch → 0, into a continuity condition for
∇n at the interface. The above observation means that,
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while rch is much smaller than all other relevant scales,
our problem is reduced to the problem of scalar decay in
chaotic bounded flow.

Furthermore, from Eq. (2), it is straightforward to
derive (the derivation procedure is similar to the one de-
scribed in Refs. [11, 12]) equations for correlation func-
tions of n. The equation for the mean value of n, 〈n〉,
derived by averaging over times larger than the correla-
tion time of the flow τ0, is

∂t〈n〉 = ∇α(Dαβ∇β〈n〉) + κ∇2〈n〉 . (4)

In the case of a short-correlated (in time) flow, λτ0 � 1,
the turbulent diffusion tensor D is expressed through
the velocity pair correlation function: Dαβ(r) =∫ ∞
0

dt 〈vα(t, r)vβ(0, r)〉. Eq. (4) remains valid in the
general, not necessarily short-correlated limit. However,
the relation between the eddy-diffusivity tensor and the
velocity correlations becomes more complicated. D(r)
tends to zero when r approaches the boundary, since the
flow velocity tends to zero there. (The longitudinal com-
ponent D‖ of the tensor D behaves as D‖ ∝ q2, whereas
its transverse component D⊥ behaves as D⊥ ∝ q4, where
q is the distance to the boundary.) Our description of
the chemical reaction problem is based on the solutions
of Eq. (4) in different spatio-temporal domains. Know-
ing 〈n〉, one can establish the temporal behavior of Na,b.
The brief style of this letter does not allow us to present
the complete analysis here. Therefore, below we report
final results, omitting details of the derivation. To clar-
ify the results, we also pay special attention to presenting
the physical picture of the phenomenon.

We find that the chemical reaction (which starts at
t = 0) undergoes the following four stages:

I. Formation of stripes in the bulk. Advection creates
from an initially smooth distribution a striped structure
of alternating domains of A and B. The stripes become
dynamically thinner, i.e. inhomogeneities of smaller and
smaller scales are produced. Once the width of the stripe
decreases down to the diffusive scale, rd, the stripe col-
lapses (wiped out by the diffusion-limited chemical re-
action) for the time ∼ λ−1. Since the stretching (con-
traction) process leading to creation of the stripes is ex-
ponential in time [8–11, 16, 17], the initial stage (when
the rd-stripes are formed) lasts for τ1 ∼ ln(Sc)/λ, i.e.
just the time required for the cascade of passive scalar
to run from L down scale to rd. Even though the inter-
facial area increases exponentially during the first stage,
Na,b do not vary significantly. By the end of this stage
the bulk parts of Na,b begin to decay rapidly (exponen-
tially), with a decrement of the order of λ, according to
the law of the passive scalar decay in an unbounded spa-
tially smooth flow [12, 18]. Thus, after the first stage the
chemicals remain mainly in the peripheral region.

Note, that after the first stage, stripes of different
widths, distributed between rd and L, are present in the

bulk. (This multi-scale structure is also seen in the pas-
sive scalar decay experiment [14, 15]). When the rd-wide
stripe, say, of the chemical A collapses, then two nearby
stripes of the chemical B form one wider stripe. Thus,
collapse of rd-narrow stripes is accompanied by creation
of wider stripes, which are shrunk by the flow in turn,
and so on and so forth.

II. Peripheral-region-dominated dynamics. The same
process of layered structure formation takes place in the
peripheral domain as well. However, advection, which is
statistically isotropic in the bulk, is strongly anisotropic
in the peripheral domain, where advection is more effi-
cient in the direction along the boundary than in the nor-
mal direction. This anisotropy causes the layers in the
peripheral domain to stretch mainly along the boundary.
The stripes closer to the boundary shrink slower than the
remote ones, since the normal to the boundary compo-
nent of the stretching rate decreases as one approaches
the boundary. Therefore the developed layered structure
(i.e. the one which contains stripes of the diffusive scale
width) occupies a part of the peripheral region where the
amounts of A and B become negligible. Thus, the empty
(of chemicals) region, formed in the bulk by the end of
the first stage, starts to expand towards the boundary.
As a result, the chemicals are arranged mainly within a
δ-vicinity of the boundary (wall), δ ∼ L/

√
λt, where the

concentrations of the chemicals remain practically un-
changed. Outside this layer, at L � q � δ (where q
is the separation from the boundary), the concentration
of chemicals decreases algebraically 〈na,b〉 ∝ t−3/2q−3.
During this stage the overall amounts of chemicals de-
crease as δ(t), that is ∝ 1/

√
t. The spatio-temporal pic-

ture explained above follows from the universal form of
the velocity field profile in the proximity of the boundary.
This stage lasts for τ2 ∼ √

Sc/λ, i.e. until δ shrinks to
the width of the boundary layer, rbl.

III. Boundary-layer-dominated dynamics. Chemicals
remain mainly within the rbl-thin (not varying with time)
vicinity of the boundary. The boundary layer width, rbl,
is still much larger than the reaction zone size (defined
for the boundary region), so that the passive scalar de-
scription applies. The interfacial area where the chemi-
cals interact does not change significantly anymore (some
fluctuations remain, but they are not essential). Thus,
due to linear relation between flux of chemicals to the
interface and their concentrations, the algebraic decay
switches to an exponential one, i.e. 〈na,b〉 ∝ exp(−γt),
for t � τ2, where γ ∼ λ/

√
Sc ∼ L−1

√
λκ. (Note, also,

that the slow-exponential regime, derived in [19] for the
passive scalar, is consistent with the experimental obser-
vations of [15].) Then, Na,b(t) ∝ exp(−γt). Chemicals
are mainly concentrated inside the diffusion boundary
layer. Outside the boundary layer (at q � rbl) one of
the chemicals prevails and its concentration decays alge-
braically, ∝ 1/q3. The passive scalar description in the
vicinity of the boundary layer is broken when rch, which
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grows exponentially with time, becomes of the order of
rbl, i.e. when at the boundary na,b becomes ∼ λ/(R

√
Sc).

One concludes that the duration of the boundary-layer-
dominated stage is τ3 ∼ γ−1 ln(Rn0

√
Sc/λ), where n0 is

the initial concentration of the chemicals.
IV. Nonlinear stage. By the end of the previous

stage, advection and diffusion homogenize the remain-
ing amounts of the chemicals, first, within the bound-
ary layer and later over the entire reservoir. After that
there are no inhomogeneities of na,b left in the sys-
tem. A purely homogeneous kinetic process takes over:
dNa,b/dt = −RV NaNb (where V is the chemical reactor
volume). Thus, Na,b ∝ 1/t, during the final stage.

If Na �= Nb then the proposed scheme is valid until
|Na −Nb| remains much smaller than Na,b, while Na sat-
urates to a constant (assuming that Na > Nb) and Nb

disappears exponentially, Nb ∝ exp(−RNat/V ), at later
time t. (Note that the exponential decay starts after a
short intermediate stage characterized by complete ho-
mogenization of A due to advection and diffusion.)

Let us now discuss the effect of unequal diffusion co-
efficients, still assuming that

√
κa,b/λ � L. If Da � 1

then during the first stages, the chemical length rch is
(as above) much smaller than all other scales. This
problem can also be reduced to a linear one consider-
ing the advection-diffusion equations in domains popu-
lated by different species, supplemented by the condition
that fluxes of the two chemicals towards the interface are
equal. During the first two stages, the evolution is con-
trolled by the stripe formation process which is insensi-
tive to the diffusion. During the latter, third and fourth,
stages of the evolution in the uneven κa ∼ κb case the
chemicals evolve similarly to what was described above
for the, κa = κb, case. Thus, the above description ap-
plies to the general, κa �= κb, case as well.

We conclude with some general remarks. This letter
explains how chaotic advection accelerates the chemical
reaction. It leads to a complicated spatio-temporal be-
havior, with a crucial role played by the flow in the pe-
ripheral region (where mixing is slower than in the bulk).
Evolution of the chemicals near the boundary determines
the intermediate stages of the reaction. We focused on
large scale chaotic flows with the size of the box being
of the order of the major scale of the flow. However,
it is also of interest for applications to describe chem-
ical reaction acceleration in turbulent flows, which are
smooth only inside the viscous range of scales [24]. Note
that in the turbulent case with a large value of the vis-
cous to dissipative scales ratio, a consideration similar
to those presented in the letter is applicable. We plan
to examine the more complicated case elsewhere in the
future. For completeness, let us also mention another
case of interest which is realized at moderate Da, large
Sc and if one of chemicals is present in abundance. The
joint effect of advection and chemistry is different in this
case (than in the problem discussed in this letter), even

though rich multi-scale structure of spatial correlations
is also revealed [20]. A final remark concerns the validity
of the hydrodynamic description of the chemical reac-
tion dynamics. It is known that the character of spatial
fluctuations in the initial distribution of chemicals may
essentially influence the long-time behavior in diffusion-
limited chemical systems [21, 22]. In some cases (of low
space dimensionality, d ≤ 2) large scale renormalization
of the concentration fields due to the small scale fluctu-
ations could be important. (See, e.g., [23].). In our case,
however, this does not happen because the long-time cor-
relations are completely destroyed by chaotic advection.
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